Spatial Databases: Lecture 4

Institute for Geoinformatics Winter Semester 2014

Malumbo Chipofya: room 109

Topic Overview

- 1. Prelude: Data and problem solving in science and applications
- 2. The Relational Database model

3. Interacting with relational databases

- 4. Spatial Relational Database Management Systems
- 5. Applications: Terraview and Terralib: Prof. Dr. Gilberto Camara
- 6. A sample of Nosql Databases: brief introductions + example applications
 - a. Array databases: SciDB
 - b. Document databases: MongoDB
 - c. Graph databases: Neo4J
- 7. Summary of all lectures given.

- Candidate Keys:
 —Uniqueness + Irreducibility
- Relational Operations:
 - –Restrict + Project + Join
- Functional Dependence: $B \rightarrow A$
 - -A is functionally dependent on B
 - -B is functionally determines on A

• Candidate Keys:

-Uniqueness + Irreducibility

- Relational Operations:
 - –Restrict + Project + Join
- Functional Dependence: $B \rightarrow A$
 - -A is functionally dependent on B
 - -B is functionally determines on A

- Candidate Keys:
 - -Uniqueness + Irreducibility
- Relational Operations:

-Restrict + Project + Join

- Functional Dependence: $B \rightarrow A$
 - -A is functionally dependent on B
 - -B functionally determines on A

• Candidate Keys:

-Uniqueness + Irreducibility

Relational Operations:

–Restrict + Project + Join

- Functional Dependence: $B \rightarrow A$
 - -A is functionally dependent on B
 - -B is functionally determines on A

• Given two sets of attributes of a relation **R**:

 $A := \{a, b, c, ...\} \quad B := \{x, y, z, ...\}$

• A is a functionally dependent on B written

$$B \rightarrow A$$

if and only if there is a function from the set of legal values of *B* to the set of legal values of *A* determined exactly by tuples of *R*

- Trivial FD $-LHS \supseteq RHS$
- The closure of a set S of FDs (denoted S⁺)
 - —The set of \pmb{all} FDs that can be derived from S
 - $-S^+$ can be computed using few simple rules

- Rules we write 'A' for {A} and 'A,B,C' for {A, B, C}
 - Reflexivity:
 - $B \subseteq A$ implies $A \longrightarrow B$
 - Augmentation:
 - $A \rightarrow B$ implies $A, C \rightarrow B, C$
 - Transitivity:
 - $A \rightarrow B$ and $B \rightarrow C$ implies $A \rightarrow C$
 - Self-determination:
 - $A \longrightarrow A$
 - Decomposition:
 - A \rightarrow B,C implies A \rightarrow B and A \rightarrow C
 - Union:
 - $A \rightarrow B$ and $A \rightarrow C$ implies $A \rightarrow B, C$
 - Composition:
 - $A \rightarrow B$ and $C \rightarrow D$ implies $A, C \rightarrow B, C$

Functional Dependencies Example: $\{A \rightarrow B, C; C \rightarrow D\}$

- Reflexivity: $B \subseteq A$ implies $A \rightarrow B$
- Augmentation: $A \rightarrow B$ implies $A, C \rightarrow B, C$
 - $-A, C \rightarrow A, D; A, C \rightarrow B, C; A, D \rightarrow B, C, D; B, C \rightarrow B, D$
- Transitivity: $A \rightarrow B$ and $B \rightarrow C$ implies $A \rightarrow C$

 $-A \rightarrow B, D; A, C \rightarrow B, D; A, C \rightarrow B, C, D$

- Self-determination: $A \rightarrow A$
- Decomposition: $A \rightarrow B, C$ implies $A \rightarrow B$ and $A \rightarrow C$ $-A \rightarrow B; A \rightarrow C; A \rightarrow D;$
- Union: $A \rightarrow B$ and $A \rightarrow C$ implies $A \rightarrow B, C$ - $A \rightarrow C, D$;
- Composition: $A \rightarrow B$ and $C \rightarrow D$ implies $A, C \rightarrow B, D$ - *Anything else*?

- Irreducibility
 - A set of FDs, S, is irreducible if and only if it satisfies
 - RHS of every FD in S has only one attribute
 - LHS of every FD in S is irreducible in the sense that discarding any attribute changes the closure of S – left irreducibility
 - Discarding any FD in S changes the closure of S

- Irreducibility: from last example
 - $-A, C \rightarrow A, D$ $-A, C \rightarrow B, C$ $-A, D \rightarrow B, C, D$ $-B, C \rightarrow B, D$ $-A, C \rightarrow B, D$

 $-A, C \rightarrow B, C, D$

- Irreducibility: from last example
 - RHS of every FD in S has only one attribute (Decomposition)

 - $-B, C \rightarrow B, D \longrightarrow B, C \rightarrow B; B, C \rightarrow C$

- Irreducibility: from last example
 - Discarding any FD in S changes the closure of S
 (Discard the trivial FDs + all those that can be derived)
 - $\begin{array}{c}
 -A, C \rightarrow A, D; \\
 -A, C \rightarrow B, C \\
 -A, C \rightarrow B, D \\
 -A, C \rightarrow B, C, D \\
 -A, D \rightarrow B, C, D \\
 -B, C \rightarrow B, D \\
 \end{array}$ $\begin{array}{c}
 A, C \rightarrow B; \quad A, C \rightarrow C; \quad A, C \rightarrow D \\
 A, D \rightarrow B; \quad A, D \rightarrow C; \quad A, D \rightarrow D \\
 B, C \rightarrow B; \quad B, C \rightarrow D
 \end{array}$

- Irreducibility: from last example
 - Discarding any attribute on LHS changes the closure of S \mbox{left} irreducibility

- Irreducibility: from last example
 - $-A \rightarrow B, C$ $-C \rightarrow D$ $1. A \rightarrow B$ $2. A \rightarrow C$ $3. C \rightarrow D$
 - The irreducible equivalent is *NOT* unique

Functional Dependency Diagrams

• {
$$A \rightarrow B, C; C \rightarrow D$$
}

• Example: Consider the our relation

ID#	Skill	M.St	#Chd	#Yrs	М.€	Date	#sticks	Wgt.	Hrs
1	Medium	Μ	0	2	40	1.06	55	9	6
2	Low	S	0	1	30	7.05	34	5	5
3	High	S	2	3	45	1.06	54	9	6
4	High	Μ	3	4	50	3.11	61	12	8

1st Normal Form (1NF)

• All legal relations are in 1NF

• Some FDs in this relation?

ID#	Skill	M.St	#Chd	#Yrs	M.€	Date	#sticks	Wgt.	Hrs
1	Medium	Μ	0	2	40	1.06	55	9	6
2	Low	S	0	1	30	7.05	34	5	5
3	High	S	2	3	45	1.06	54	9	6
4	High	Μ	3	4	50	3.11	61	12	8
	#Yrs ◀	[Da	ate				#sticks	5
	#Chd	[1[D#			→	Wgt.	
	M.St						→	Hrs	
	M.€ ◀	ſ	S	kill					

• What are the problems with this relation?

ID#	Skill	M.St	#Chd	#Yrs	M.€	Date	#sticks	Wgt.	Hrs
1	Medium	Μ	0	2	40	1.06	55	9	6
2	Low	S	0	1	30	7.05	34	5	5
3	High	S	2	3	45	1.06	54	9	6
4	High	Μ	3	4	50	3.11	61	12	8
	#Yrs ← #Chd ←			ate D#				#sticks Wgt.	5
	M.St <			↓ ↓			→	Hrs	
	M.€ <] [S	kill					

• Let's reveal a few more dependencies

ID#	Skill		M.St	#Chd	#Yrs	M.€	Date	#sticks	Wgt.	Hrs
1	Medium		Μ	0	2	40	1.06	55	9	6
2	Low		S	0	1	30	7.05	34	5	5
3	High		S	2	3	45	1.06	54	9	6
4	High		Μ	3	4	50	3.11	61	12	8
	#Yrs	<u> </u>	_ [Da	ate			→	#sticks	;
	#Chd	┝	++1	10	D#			→	Wgt.	
	M.St	}←──							Hrs	
	M.€	┢		S	kill					

• Let's reveal a few more dependencies

ID#	Skill	M.St	#Chd	#Yrs	M.€	Date	#sticks	Wgt.	Hrs
1	Medium	Μ	0	2	40	1.06	55	9	6
2	Low	S	0	1	30	7.05	34	5	5
3	High	S	2	3	45	1.06	54	9	6
4	High	Μ	3	4	50	3.11	61	12	8

• Decompose the relation by projecting it

ID#	Skill	#Yrs	M.€
1	Medium	2	40
2	Low	1	30
3	High	3	45
4	High	4	50

ID#	Date	#sticks	Wgt.	Hrs
1	1.06	55	9	6
2	7.05	34	5	5
3	1.06	54	9	6
4	3.11	61	12	8

• This relation is fine – It's at least in 2NF

ID#	Date	#sticks	Wgt.	Hrs
1	1.06	55	9	6
2	7.05	34	5	5
3	1.06	54	9	6
4	3.11	61	12	8

2nd Normal Form (2NF)

 A relation is in 2NF *if and only if* every nonkey attribute is *irreducibly dependent* on the Primary Key

• What's wrong with this relation?

ID#	Skill	#Yrs	M.€
1	Medium	2	40
2	Low	1	30
3	High	3	45
4	High	4	50

• Decompose the relation – again by projection

SPATIAL INTELLIGENCE LABORATORY

3rd Normal Form (3NF)

 A relation is in 2NF *if and only if* it is in 2NF every nonkey attribute is *nontransitively dependent* on the Primary Key

3rd Normal Form (3NF)

 A relation is in 2NF *if and only if* it is in 2NF every nonkey attribute is *nontransitively dependent* on the Primary Key

Decompose the relation – again by projection

#Yrs	M.€					
2	40					
1	30					
3	45					
4	50					
#Yrs						

#Yrs	Skill
2	Medium
1	Low
3	High
4	High

Boyce-Codd Normal Form

- Note in the previous examples we considered only a single candidate key
- Boyce-codd normal form considers also cases where we have overlapping candidate keys

Boyce-Codd Normal Form (BCNF)

 A relation is in BCNF *if and only if* every nontrivial left irreducible FD has a candidate key as its determinant (LHS)

Boyce-Codd Normal Form

• In a diagram

ID#	Date	#sticks	Wgt.	Hrs	Hrs. Cumm
1	1.06	55	9	6	2212
2	7.05	34	5	5	3182
3	1.06	54	9	6	3097
4	3.11	61	12	8	5220

Boyce-Codd Normal Form

• In a diagram

ID#	Date	#sticks	Wgt.	Hrs	Hrs. Cumm
1	1.06	55	9	6	2212
2	7.05	34	5	5	3182
3	1.06	54	9	6	3097
4	3.11	61	12	8	5220

References

- C.J. Date, An Introduction to Database Systems, 8th Edition. Pearson Education Inc., 2004.
- See <u>www.geoinformatic.cc</u>

That's NOT all for today

Practical

That's all for today

Thank you! Questions?

