Spatial Databases: Lecture 4

Institute for Geoinformatics

Winter Semester 2014

Malumbo Chipofya: room 109

Topic Overview

1. Prelude: Data and problem solving in science and applications
2. The Relational Database model
3. Interacting with relational databases
4. Spatial Relational Database Management Systems
5. Applications: Terraview and Terralib: Prof. Dr. Gilberto Camara
6. A sample of Nosql Databases: brief introductions + example applications
a. Array databases: SciDB
b. Document databases: MongoDB
c. Graph databases: Neo4J
7. Summary of all lectures given.

Recap

- Candidate Keys:
-Uniqueness + Irreducibility
Relational Operations:

Functional Dependence: $B \rightarrow A$ -A is functionally dependent on B $-B$ is functionally determines on A

Recap

Candidate Keys: -Uniqueness + Irreclucibility

- Relational Operations:
-Restrict + Project + Join

$$
\begin{aligned}
& \text { Functional Dependence: } B \rightarrow A \\
& -\mathrm{A} \text { is functionally dependent on } \mathrm{B} \\
& -\mathrm{B} \text { is functionally determines on } \mathrm{A}
\end{aligned}
$$

Recap

- Candidate Keys: -Uniqueness + Irreducibility

Relational Operations:
-Restrict + Project + Join

- Functional Dependence: $B \rightarrow A$
$-A$ is functionally dependent on B
-B functionally determines on A

Recap

- Candidate Keys:
-Uniqueness + Irreducibility
- Relational Operations:
-Restrict + Project + Join
- Functional Dependence: $B \rightarrow A$
$-A$ is functionally dependent on B
$-B$ is functionally determines on A

Functional Dependencies

- Given two sets of attributes of a relation \boldsymbol{R} :

$$
A:=\{a, b, c, \ldots\} \quad B:=\{x, y, z, \ldots\}
$$

- \boldsymbol{A} is a functionally dependent on \boldsymbol{B} written

$$
B \rightarrow A
$$

if and only if there is a function from the set of legal values of \boldsymbol{B} to the set of legal values of \boldsymbol{A} determined exactly by tuples of \boldsymbol{R}

Functional Dependencies

- Trivial FD
-LHS \supseteq RHS
- The closure of a set S of FDs (denoted S^{+})
-The set of all FDs that can be derived from S
$-S^{+}$can be computed using few simple rules

Functional Dependencies

- Rules - we write ' A ' for $\{A\}$ and ' A, B, C ' for $\{A, B, C\}$
- Reflexivity:
- $\mathrm{B} \subseteq \mathrm{A}$ implies $\mathrm{A} \longrightarrow \mathrm{B}$
- Augmentation:
- $\mathrm{A} \rightarrow \mathrm{B}$ implies $\mathrm{A}, \mathrm{C} \rightarrow \mathrm{B}, \mathrm{C}$
- Transitivity:
- $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \mathrm{C}$ implies $\mathrm{A} \longrightarrow \mathrm{C}$
- Self-determination:
- A \rightarrow A
- Decomposition:
- $\mathrm{A} \rightarrow \mathrm{B}, \mathrm{C}$ implies $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{A} \rightarrow \mathrm{C}$
- Union:
- $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{A} \rightarrow \mathrm{C}$ implies $\mathrm{A} \longrightarrow \mathrm{B}, \mathrm{C}$
- Composition:
- $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{C} \rightarrow \mathrm{D}$ implies $\mathrm{A}, \mathrm{C} \longrightarrow \mathrm{B}, \mathrm{C}$

Functional Dependencies Example:

$$
\{A \rightarrow B, C ; C \rightarrow D\}
$$

- Reflexivity: $\mathrm{B} \subseteq \mathrm{A}$ implies $\mathrm{A} \longrightarrow \mathrm{B}$
- Augmentation: $\mathrm{A} \rightarrow \mathrm{B}$ implies $\mathrm{A}, \mathrm{C} \longrightarrow \mathrm{B}, \mathrm{C}$

$$
-A, C \rightarrow A, D ; \quad A, C \rightarrow B, C ; A, D \rightarrow B, C, D ; B, C \rightarrow B, D
$$

- Transitivity: $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \mathrm{C}$ implies $\mathrm{A} \rightarrow \mathrm{C}$

$$
-A \rightarrow B, D ; \quad A, C \rightarrow B, D ; \quad A, C \rightarrow B, C, D
$$

- Self-determination: $\mathrm{A} \rightarrow \mathrm{A}$
- Decomposition: $\mathrm{A} \longrightarrow \mathrm{B}, \mathrm{C}$ implies $\mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{A} \longrightarrow \mathrm{C}$

$$
-A \rightarrow B ; \quad A \rightarrow C ; \quad A \rightarrow D ;
$$

- Union: $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{A} \rightarrow \mathrm{C}$ implies $\mathrm{A} \longrightarrow \mathrm{B}, \mathrm{C}$
$-A \rightarrow C, D$;
- Composition: $\mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{C} \rightarrow \mathrm{D}$ implies $\mathrm{A}, \mathrm{C} \rightarrow \mathrm{B}, \mathrm{D}$
- Anything else?

Functional Dependencies

- Irreducibility
- A set of FDs, S, is irreducible if and only if it satisfies
- RHS of every FD in S has only one attribute
- LHS of every FD in S is irreducible in the sense that discarding any attribute changes the closure of S - left irreducibility
- Discarding any FD in S changes the closure of S

Functional Dependencies

- Irreducibility: from last example
$-A, C \rightarrow A, D$
$-A, C \rightarrow B, C$
$-A, D \rightarrow B, C, D$
$-B, C \rightarrow B, D$
$-A, C \rightarrow B, D$
$-A, C \rightarrow B, C, D$

Functional Dependencies

- Irreducibility: from last example
- RHS of every FD in S has only one attribute (Decomposition)
$-A, C \rightarrow A, D$;
$-A, C \rightarrow B, C$
$A, C \rightarrow B ; \quad A, C \rightarrow B ; \quad A, C \rightarrow D$
$-A, C \rightarrow B, D$
$-A, C \rightarrow B, C, D$
$-A, D \rightarrow B, C, D \smile A, D \rightarrow B ; \quad A, D \rightarrow C ; \quad A, D \rightarrow D$
$-B, C \rightarrow B, D \rightleftharpoons B, C \rightarrow B ; B, C \rightarrow C$

Functional Dependencies

- Irreducibility: from last example
- Discarding any FD in S changes the closure of S
(Discard the trivial FDs + all those that can be derived)
$-A, C \rightarrow A, D$;
$-A, C \rightarrow B, C$
$-A, C \rightarrow B, D \quad A, C \rightarrow B ; \quad A, C \rightarrow C ; A, C \rightarrow D$
$-A, C \rightarrow B, C, D$
$-A, D \rightarrow B, C, D$
$-B, C \rightarrow B, D$
刁 $A, D \rightarrow B ; \quad A, D \rightarrow C ; \quad A, D \rightarrow D$
刁 $B, C \rightarrow B ; \quad B, C \rightarrow D$

Functional Dependencies

- Irreducibility: from last example
- Discarding any attribute on LHS changes the closure of S - left irreducibility
$-A, C \rightarrow A, D ;$
$-A, C \rightarrow B, C$
$-A, C \rightarrow B, D$
$-A, C \rightarrow B, C, D$
$\succ A, C \rightarrow B$;

$-A, D \rightarrow B, C, D \sim A, D \rightarrow B ; \quad A, D \rightarrow C$;
$-B, C \rightarrow B, D$
$B, C \rightarrow D$

Functional Dependencies

- Irreducibility: from last example
$-A \rightarrow B, C$
$-C \rightarrow D$

1. $A \rightarrow B$
2. $A \rightarrow C$
3. $C \rightarrow D$

- The irreducible equivalent is NOT unique

Functional Dependency Diagrams

- $\{A \rightarrow B, C ; C \rightarrow D\}$

Normal Forms

- Example: Consider the our relation

ID\#	Skill	M.St	\#Chd	\#Yrs	M. €	Date	\#sticks	Wgt.	Hrs
$\mathbf{1}$	Medium	M	0	2	40	1.06	55	9	6
2	Low	S	0	1	30	7.05	34	5	5
3	High	S	2	3	45	1.06	54	9	6
4	High	M	3	4	50	3.11	61	12	8

$1^{\text {st }}$ Normal Form (1NF)

- All legal relations are in 1NF

Normal Forms

- Some FDs in this relation?

ID\#	Skill	M.St	\#Chd	\#Yrs	M.€	Date	\#sticks	Wgt.	Hrs
1	Medium	M	0	2	40	1.06	55	9	6
2	Low	S	0	1	30	7.05	34	5	5
3	High	S	2	3	45	1.06	54	9	6
4	High	M	3	4	50	3.11	61	12	8
	\#Yrs		Date					\#sticks	
	\#Chd		ID\#					Wgt.	
	M.St		\downarrow					Hrs	
	M.€		Skill						

Normal Forms

- What are the problems with this relation?

Normal Forms

- Let's reveal a few more dependencies

Normal Forms

- Let's reveal a few more dependencies

Normal Forms

- Decompose the relation by projecting it

ID\#	Skill	\#Yrs	M. $€$
1	Medium	2	40
2	Low	1	30
3	High	3	45
4	High	4	50

ID\#	Date	\#sticks	Wgt.	Hrs
1	1.06	55	9	6
2	7.05	34	5	5
3	1.06	54	9	6
4	3.11	61	12	8

Normal Forms

- This relation is fine - It's at least in 2NF

ID\#	Date	\#sticks	Wgt.	Hrs
1	1.06	55	9	6
2	7.05	34	5	5
3	1.06	54	9	6
4	3.11	61	12	8

Normal Forms

$2^{\text {nd }}$ Normal Form (2NF)

- A relation is in 2NF if and only if every nonkey attribute is irreducibly dependent on the Primary Key

Normal Forms

- What's wrong with this relation?

ID\#	Skill	\#Yrs	M.€
1	Medium	2	40
2	Low	1	30
3	High	3	45
4	High	4	50

Normal Forms

- Decompose the relation - again by projection

ID\#	\#Yrs
1	2
2	1
3	2
4	4

\#Yrs	Skill	M.€
2	Medium	40
1	Low	30
3	High	45
4	High	50

Normal Forms

$3^{\text {rd }}$ Normal Form (3NF)

- A relation is in 2NF if and only if it is in 2NF every nonkey attribute is nontransitively dependent on the Primary Key

Normal Forms

$3^{\text {rd }}$ Normal Form (3NF)

- A relation is in 2NF if and only if it is in 2NF every nonkey attribute is nontransitively dependent on the Primary Key

Normal Forms

- Decompose the relation - again by projection

\#Yrs	Skill
2	Medium
1	Low
3	High
4	High

Boyce-Codd Normal Form

- Note in the previous examples we considered only a single candidate key
- Boyce-codd normal form considers also cases where we have overlapping candidate keys Boyce-Codd Normal Form (BCNF)
- A relation is in BCNF if and only if every nontrivial left irreducible FD has a candidate key as its determinant (LHS)

Boyce-Codd Normal Form

- In a diagram

ID\#	Date	\#sticks	Wgt.	Hrs	Hrs. Cumm
$\mathbf{1}$	1.06	55	9	6	2212
2	7.05	34	5	5	3182
3	1.06	54	9	6	3097
4	3.11	61	12	8	5220

Boyce-Codd Normal Form

- In a diagram

ID\#	Date	\#sticks	Wgt.	Hrs	Hrs. Cumm
$\mathbf{1}$	1.06	55	9	6	2212
2	7.05	34	5	5	3182
3	1.06	54	9	6	3097
4	3.11	61	12	8	5220

References

- C.J. Date, An Introduction to Database Systems, $8^{\text {th }}$ Edition. Pearson Education Inc., 2004.
- See www.geoinformatic.cc

That's NOT all for today

Practical

That's all for today

Thank you!

Questions?

